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ABSTRACT
Summary: We report on a major update (version 2) of the original
SHort Read Mapping Program (SHRiMP). SHRiMP2 primarily targets
mapping sensitivity, and is able to achieve high accuracy at a very
reasonable speed. SHRiMP2 supports both letter space and color
space (AB/SOLiD) reads, enables for direct alignment of paired reads
and uses parallel computation to fully utilize multi-core architectures.
Availability: SHRiMP2 executables and source code are freely
available at: http://compbio.cs.toronto.edu/shrimp/
Contact: shrimp@cs.toronto.edu

1 INTRODUCTION
High Throughput Sequencing (HTS) machines produce datasets of
50–200 million reads of 32–400 base pairs (bp) per run. The first
step in the analysis of HTS datasets is mapping the reads to a
reference genome, which is followed by specialized processing tools
that aim to identify signals (e.g. genomic variants, or high coverage
peaks) from the mappings. Mapping HTS reads to a large reference
genome is a non-trivial computational task, and the various read
mapping programs that have been developed in recent years target
different speed-accuracy trade-offs. Programs that primarily target
speed are typically based on (near-)exact string matching methods,
whereas programs that primarily target sensitivity (alignment of
reads with high polymorphism, or to a distant reference) are often
based on projections with spaced seeds. For a recent survey of the
current read mapping programs, see (Li and Homer, 2010).

Here we report on a major update (version 2) of the SHort Read
Mapping Program (SHRiMP) (Rumble et al., 2009). SHRiMP2
primarily targets mapping accuracy, enabling the alignment
of reads with extensive polymorphism and sequencing errors,
while featuring a significant speedup over the previous versions.
SHRiMP2 supports fasta and fastq input formats, SAM output
format, mapping of Illumina/Solexa, Roche/454 and AB/SOLiD
reads, a paired mapping mode, and parallel computation.

2 METHODS
SHRiMP2 works by indexing the genome using multiple spaced
seeds, projecting each read to identify candidate mapping locations
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(CMLs), and ultimately investigating these CMLs with the Smith-
Waterman algorithm. A major difference between the original
SHRiMP and SHRiMP2 is that the former indexed the reads;
switching to a genome index resulted in a dramatic speed increase
and further allowed us to add a paired mapping mode and to utilize
multi-threaded computation without affecting sensitivity. For more
details on the methods described below, as well as for used below
see the original SHRiMP paper (Rumble et al., 2009).

Genome Index. SHRiMP2 starts by projecting the reference genome
using several spaced seeds (Ilie and Ilie, 2007). Each seed is applied
at each genome location, obtaining a (spaced) kmer. For every seed
and every k-mer, the genome index contains a list of locations where
that k-mer can be found using that seed. Ubiquitous k-mers (with
very long lists) are discarded, as they do not help identify CMLs.

RAM Usage. The genome index is loaded in memory, and lookups
are performed while running through the read set. To ensure good
performance the entire genome index must fit in RAM. For each
seed of weight w we construct an index that consists of a table with
4w entries (if w > 12, SHRiMP2 provides the option to hash the
resulting k-mers before indexing them, which can be thought of as
using weight w = 12). Each entry of the table contains a pointer to a
list of locations of the seed on the genome. An index is constructed
for every seed, so indexing a genome of length n with k seeds of
weight w requires: k · (4w · 12 + n · 4) bytes. SHRiMP2 provides
tools to break the genome into pieces that fit in a target RAM size,
as well as to integrate the resulting mappings.

Projecting the Reads. With the genome index loaded in memory,
several threads are used to map the reads in parallel. Each read is
projected using the spaced seeds, and the genome locations where
those k-mers appear are looked up in the index. These k-mers are
the matching diagonals in the matrix where the genome is laid out
on the x axis and the read on the y axis.

Generating Candidate Mapping Locations (CMLs). Given a length
and a score, the list of matching diagonals is scanned for genomic
windows of the given length where an alignment with the given
score (between the read and the genome) can be constructed from
diagonals alone. A CML is generated for every such window. This
process is analogous to q-gram filters (Rasmussen et al., 2006).

Paired Mapping Mode. In this mode, the reads in every pair are
analyzed and mapped together: a CML for one is analyzed only if
a CML for the other exists such that the size of the genomic insert
between the two falls within a specified allowable range.
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Fig. 1. A Precision and recall in 4 regimes, by polymorphism. (A,B): reads containing A SNPs, one indel of size B, and errors. B Running times (in minutes)
of each tool on 6 · 106 unpaired 50bp reads (top) and paired 75bp reads (bottom), while utilizing 6 cores of an 8 core 3Ghz Xeon machine with 16Gb RAM.

Smith-Waterman Alignment. The CMLs for each read (or pair) are
investigated by the standard Smith-Waterman (SW) string matching
algorithm (Smith and Waterman, 1981), which helps obtain high
sensitivity to indels. For SOLiD reads we align the genome to
the four possible “translations” of the read, thus allowing for
sequencing errors (see Rumble et al. (2009); Homer et al. (2009)).
SHRiMP2 also uses a caching heuristic to speed up the alignment
of reads from repetitive regions: after alignment, we compute a
cryptographic hash of the target region, and store it together with
the score. Before starting a SW, we first check if an identical region
has already been aligned, and if so just reuse the score.

3 RESULTS & DISCUSSION
We compared SHRiMP2 to three other leading read mapping
programs: BFAST (Homer et al., 2009), BOWTIE (Langmead et al.,
2009), and BWA (Li and Durbin, 2009). We generated 2 datasets,
each containing 6,000,000 paired color-space reads, of 50 and 75bp,
respectively, simulated from the Ciona.savignyi genome (180Mb).
The reads contain variants (SNPs and indels), as well as sequencing
errors distributed according to typical (non-uniform) error profiles
of the SOLiD machine (4% average per-color error rate).

A read (pair) is mapped “uniquely” if of all mappings for that
read (pair), the one with the highest score is unique. A uniquely
mapped read (pair), is mapped “correctly” if the mapping with the
highest score is ±5bp of the location where the read (or both reads in
the pair) was simulated from. We define recall as the fraction of all
reads (pairs) that are mapped correctly and precision as the fraction
of all uniquely mapped reads (pairs) that are mapped correctly. In
Figure 1A we present precision and recall of each algorithm, and in
Figure 1B we demonstrate the runtimes for two of the datasets.

Of all the other short read mapping programs, we found that
BFAST is the only one directly comparable to SHRiMP2 in
providing high sensitivity even for highly polymorphic reads,

practical speed, and wealth of features. In our tests, SHRiMP2
achieves similar or better sensitivity for all polymorphism classes,
at about one fourth the running time of BFAST. While we include
BOWTIE and BWA in the comparison, these programs primarily
target speed, and do not match the sensitivity of SHRiMP2 or
BFAST for highly polymorphic reads. We also include SHRiMP2
in “fast” mode (SHRiMP-f; seeds of weight 16 vs. 12, SW score
thresholds 60/68 vs. 50/55). At these parameters SHRiMP2 is one
order of magnitude slower than BOWTIE and BWA, but achieves
significantly better sensitivity for various polymorphism classes.
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