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ABSTRACT

Motivation: Next Generation Sequencing (NGS) technologies
are transforming the study of genomic variation. While most
NGS technologies sequence the residues of the genome directly,
generating base calls for each position, the Applied Biosystem’s
SOLID platform generates dibase-coded (color-space) sequences.
Di-base encoding is optimized for variation, and the various NGS
technologies have different sequencing biases and error rates.
Combining data from the various platforms should therefore increase
accuracy of variation detection. Yet, to date there are only a few tools
that can identify variants from color-space data, and none that can
analyze color-space and regular (letter-space) data together.
Results: We present VARID - a probabilistic method for
variation detection from both letter-space and color-space reads
simultaneously. VARID is based on a Hidden Markov Model (HMM),
and it allows for accurate detection of heterozygous, homozygous
and tri-allelic SNPs, as well as microindels by running the Forward-
Backward algorithm on the resulting HMM. Our analysis shows that
VARID performs better than the ABI SOLID toolset at detecting
variants from color-space, and improves the calls dramatically when
letterspace and color-space reads are combined.

Availability: The toolset is freely available at
http://compbio.cs.utoronto.ca/varid.

Contact: adalca@mit.edu; brudno@cs.toronto.edu

1 INTRODUCTION

Next Generation Sequencing (NGS) technologies are revolutionizing
the way biologists acquire and analyze genomic data. NGS
machines, such as 454/Roche, Illumina/Solexa, and ABI SOLiD
are able to sequence up to a full human genome per week, at a
cost hundreds-fold less than previous methods. The resulting data
consists of reads ranging in length between 35-400 nucleotides,
from unknown locations in the genome. Analysis of these datasets
poses an unprecedented informatics challenge, because of the sheer
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number of reads that a single run of an NGS machine can produce,
because the reads are significantly shorter, and because the different
technologies have very different sequencing biases and error rates.
The two basic steps in the discovery of variants in the human
population from reads coming from any of these technologies are
first, the mapping of reads to a finished (reference) genome, and
second the identification of variation by analysis of these mappings.

In the last few years there have been many approaches proposed
for mapping reads from NGS technologies (Lin er al. (2008), Li
et al. (2008a), Li et al. (2008b), Li et al. (2009), Campagna
et al. (2009), Langmead er al. (2009), Li and Durbin (2009),
Rumble et al. (2009)), that utilize a wide variety of approaches.
Compared to this multitude of mapping tools, there have only been
a handful of toolsets for single nucleotide polymorphism (SNP) and
small (1-5 bp) indel discovery. The main challenge for this task
lies in judging the likelihood that a position is a heterozygous or
homozygous variant given the error rates of the various platforms,
the probability of bad mappings, and the amount of support or
coverage. This is further complicated by the different types of errors
and data representation methods used by the various technologies.
For example, while the predominant error type in Illumina is
the mis-reading of a basepair, in 454/Roche the most common
mistake is insertion/deletion errors in a homopolymer (same base
repeating multiple times). The ABI SOLiD system introduced a
dibase sequencing technique where two nucleotides are read at every
step of the sequencing process together as one color. Only four dyes
are used for the 16 possible dibases, and the predominant error is
the miscall of a color (colors are often written as numbers 0-3).
Most tools for variation detection (Marth er al. (1999), Li et al.
(2008a), Li et al. (2009)) combine a detailed data preparation step,
in which the reads are filtered, re-aligned, and often re-scored, with
a nucleotide or heterozygosity calling step, typically done using
a Bayesian framework. The typical parameters considered are the
sequencing error rate, the SNP rate in the population (the prior),
and the likelihood of misalignment (mapping quality). Most of the
tools for SNP calling analyze one base of the reference genome at
a time, and do not use adjacent locations to help call SNPs, as they
are usually independent in letter-space sequencing.
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ABI SOLiD sequencing is different in this respect. While typical,
letter-space reads represent the DNA sequences directly as a string
of A’s, C’s, G’s and T’s, one can think of dibase encoding as the
output of a Finite State Automaton: consider each color as the shift
from one letter to the next, so even though only four colors are
generated, we can derive each subsequent letter if we know the
previous one (see Figure 1). Sequencing starts at the last letter of
the molecule that connects to the DNA (the linker), which is known,
thus enabling the translation of the whole read from color-space into
letter space. It is important to note, however, that if one of the colors
in a read is misidentified (e.g. due to a sequencing error), this will
change all of the subsequent letters in the translation (Figure 1). For
this reason, simply translating the reads to letter-space would be
impractical. While this error profile may at first seem detrimental, it
can actually be advantageous when we need to decide if a particular
difference between a read and the reference genome is due to an
underlying change in DNA or a sequencing error: most underlying
variants in the DNA will change two adjacent colors (with some
exceptions), while the probability that two adjacent colors are both
misread is small, as error probabilities at adjacent positions are
thought to be independent, and hence very small together.

AB SOLiD’s di-base sequencing presents several unique
challenges for SNP and indel identification. Some tools for color-
space SNP calling first map the reads in color-space by translating
the reference, but then translate the multiple alignment back to
nucleotide space in order to call SNPs (Li er al. (2008a), Li and
Durbin (2009)). McKernan et al. (2009) describe Corona Lite, a
consensus technique where each valid pair of read colors votes
for an overall base call. Currently, there are no methods that
can simultaneously call SNPs from both color-space and letter-
space data - an important consideration since the advantages and
disadvantages of the various platforms are quite disparate. By
combining these data sources, it is possible to exploit the strengths
of multiple NGS technologies to improve on the accuracy of current
SNP callers. In this paper we present VARID - a probabilistic
approach for variant identification from either or both letter-space
and color-space data simultaneously. We represent both types of
data as emissions from a Hidden Markov Model (HMM), while
the underlying genotypes of the sequenced genome are the hidden
states. By applying the forward-backward algorithm on the HMM
we generate, for every base of the genome, a probability distribution
over the possible bases. In our testing, VARiD performs more
accurately than ABs’ Corona Light pipeline for just color-space
data, while its ability to incorporate letter-space data allows for
more accurate determination of genomic variants using multiple
read types, simultaneously.

2 ALGORITHMS

In this section we introduce our application of a Hidden Markov
Model (HMM) to the process of detecting variation from mapped
reads. We begin by describing a simplified version of the model,
and then describe the details of the full model and pipeline.

2.1 A Hidden Markov Model for Variation Detection

A Hidden Markov Model is a statistical model where the states of
the system are hidden - that is, not observable directly - and respect a
Markov progression. The observables are emissions from the hidden

Sequencing Error

> T212313230313232121311120
> T212313230310232121311120

SNP
> TCAGCATCGGCAGCGACTGCACAGG
> T212313230312332121311120

Translating with an error
> T212313230310232121311120
> TCAGCATCGGCAAGCTGACGTGTCC

Fig. 1. Color-space description: On the left, we note the difference between
a SNP and a color-space error, and the effects of translating a read with an
error. The first letter shown in the reads is actually the last letter of the linker,
which helps us ”lock-in” on one of the four possible translations of a color-
space read. On the right, we have the translation matrix and its associated
Finite State Automaton.

states. For a detailed introduction of HMMs with an application to
computational biology, we refer the reader to Chapter 3 of Durbin
et al. (1999). The structure of an HMM is defined in terms of the
possible hidden states and the permitted transitions between these.
The model is then parametrized by the emission and transition
probabilities. In the context of variation detection, we define the
following HMM model (illustrated in Figure 2):

o States. The unknown states in the HMM indicate the possible
donor genotypes at each position in the genome. Because we
will model color-space, as well as letter-space data, and color-
space sequencing corresponds to the change between adjacent
nucleotides, the HMM will have states that correspond to pairs
of consecutive positions. Overall, there are 16 possible states:
{AA, AC, AG, AT, CA, .., TG, TT}, illustrated in green in
Figure 2a.

o Transitions. Because each state corresponds to a pair of
nucleotides, two adjacent states will overlap by one nucleotide:
for example, the state at positions (5, 6) will be followed by the
state at positions (6, 7), thus sharing the nucleotide at position
6. Consequently the transitions are constrained so that states
that end with some nucleotide Y can only transition to states
that start with the same nucleotide Y, thus forcing transitions
that obey the overlap between adjacent states (see Figure 2b).
Using this constraint and the frequency of each nucleotide, we
define our transition probabilities:

P(transition SZ — XY) = (1)

ifX=27
otherwise

frequency (Y
p(XY|SZ):{ d OY( )

For example, the state (TA) will have probability of O to
transition in any state not starting with A due to our constraint,
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and the probability of transition to state (AY), where Y is one
of {A, C, G, T} is equal to nucleotide Y’s frequency.

Emissions. Given that the states of the model correspond to
the donor genotypes, the emissions are the donor reads at those
loci, generated by either letter-space or color-space sequencing
technologies (Figure 3). The genotype state at some position
(p, p+ 1) emits one color and one letter (we arbitrarily choose
the second, p+1 emission). Because the states overlap, the first
nucleotide is emitted by the previous state. Since the emissions
are (mapped) reads, and since platforms and mappers are prone
to error, a state CA will emit color 1 with high probability,
although it may emit other colors, i.e. the reads may see other
colors at this position, with some error probability €. Similarly,
CA will emit the letter A with high probability, but may emit
other letters with some error £. We define the probability of
emitting one particular color or letter given a state by (also see
Figure 3):

P(emission = c|state = CA) = 2)

1—3¢ ifcisl
acien ={ 1

ifcis0,2o0r3
and

P(emission = ¢|state = CA) = 3)
if £is A

[
‘MCA)*{ € iflisC,GorT

Similar emission probabilities follow for all states. Since in
general more than one read will cover a position, and we may
have reads from different technologies, we combine the above
definitions to get the emission probabilities for our HMM:

P(emissions = Elstate = s) =

( 11 q(cls))( 11 q(ﬁls)) &
letters £E E

colors cE E
where E is a set of letter and color emissions at that position.
For example, illustrated in Figure 3,

q(Els)

P(emissions = {0,0,1,A,A,C}|state = CC) =
((1=3e)%") (1-38¢) 9

Genotyping. We formulate the problem of variation detection
from letter-space and color-space sequencing as the problem
of finding the maximum likelihood state for each genotype’s
position, given the emissions generated by the HMM. We can
solve for these using the Forward-Backward algorithm, which
yields the likelihood of each state at each location (Figure 5).
We detect variants by comparing the most likely state with the
reference nucleotide at this position.

Emit Colors from pair

Emit Letters from second letter

\Tv ansitions

for the pairs of
nucleotides

<n>

Fig. 2. Illustration of the VARiID HMM Model. On the left, emissions, states
and transitions are illustrated, and on the right we illustrated in detail how
one can transition from one state to the next. Note that Y is shared in the
illustration on the right, and hence we can only transition from a state ending
in, say, letter A to a state starting with A

®
@
®
®

Unknown donor -~ NNNNNNNNNNNNNN...
7010201J0B11223
Color reads T10301(1p+3223—— > color emissions
T201(Q0B11223
ATTGCGCARTGCG
Letter reads TTGGGCAAFGEGA————> letter emissions
GCGCACTGCGAC

pe=l1-)" xe'Ix[(1-36)' x&7]

E={0,1,0AAC}H

Fig. 3. This figure illustrates the concept of emissions in our problem: at
the top, we have two adjacent positions in the unknown genome. We also
have 6 aligned reads - 3 color-space, 3 letter-space. The exact aligned colors
to this pair, and the exact aligned letters to the second letter in this pair
represent the 6 emissions observed for this state. We can proceed to compute
the probability that these emissions came from a state AA, AC, ... We show
such a computation for the state CC. This example is also described in the
text, see eq (5).

2.2 VARID: Algorithm for Variation Identification

In the previous sub-section we described a simplified HMM model
for variation detection. This simple HMM, however, calls only a
single nucleotide per position, and cannot detect events such as
micro-indels or heterozygous SNPs. In this section we describe
the full VARID Variation Identification algorithm, including the
expanded HMM utilized to address the above shortcomings, and
the use of base and mapping quality values to parametrize the
emission probabilities. We also summarize the post-processing
methods utilized in VARID to filter some types of spurious calls.

2.2.1 Extensions to the HMUM

o Insertions and Deletions. In order to detect micro-indels, the
model must include gaps in the state definitions. Because of the
nature of color-space sequencing, the expanded model needs to
maintain the last letter before the current gap was started. For
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@ emission probability @

——] coloro |[1-3¢ | 7

ﬁl color1 | | € | L fl:; ::1: E;I;Fribution

—— colorz__|[ e | clorapace

——| color3 |[ ¢ | J

ﬁl letter A | | 1- 35 | For state TT,

(et C [ € ] | | S
letter-space

H letter G | | 3 |

—>| letter T | | g | B

Fig. 4. Possible emissions of the states AA and TT, with the respective
probabilities. Here, € and & are the error probabilities in color-space and
letter-space. In the complete VARiD model, these errors will vary with their
position in a read.

FB Probabilities

o

RS |

most likely state

@-®6-@®-@

Fig. 5. An example of the resulting probabilities given by the Forward-
Backward algorithm: in this case, the state AT will be most likely, and the
nucleotide T will therefore be proposed.

example, the A——G subsequence, represented by the states {(A
-), (- -), (- G)}, should emit the color 2 of AG on the last state,
which is accomplished by maintaining four gap types, gapA,
gapC, gapG and gapT, with the rule that a gapX state can only
follow the letter X or another gapX state, as demonstrated in
Figure 6a. Thus, in addition to the 16 basic states there are also
24 gap states: 4 states (X, gapX), 4 states (gapX, gapX), and 16
states (gapX, Y), where X and Y are nucleotides {A, C, G, or
T}, giving a total of 40 states.

o Heterozygous SNPs. To allow for heterozygous variant
detection, we build an expanded set of states by taking
the cross-product of the state space with itself. Each state
represents both alleles at a position and thus corresponds to
a pair of dibases, e.g. (AC/AG), or (A-/TG). After expanding

the states for indels and diploid states, there are a total of
40% = 1600 states in the HMM. Similar to the transition
probabilities above, only a small fraction of the possible
transitions are allowed: states where the second nucleotides in
the two alleles are A and G, for example, can only transition to
states where the first nucleotides are A and G, and the transition
probabilities in such cases are based on nucleotide frequencies
(as demonstrated in the Figure 6b).

o Emission probabilities. While the simple model described
above used constant errors € and £ to parametrize color- and
letter-space emissions, respectively, in practice the error rates
vary with the position in the read, and most platforms also
generate a quality score for each position in the read to indicate
the likelihood of error. VARID can use both of these sources
of information, either converting a quality value into an error
likelihood (assuming it is on the standard PHRAP scale),
or using pre-specified error likelihoods for every position in
a read. In the results presented below we use the second
approach, as in our experience with the ABI SOLiD data the
quality values proved less informative than the read position.
The per-position error frequencies are maximum likelihood
estimates obtained from the alignments of the color-space
reads. For the 454 data we use a fixed error probability of 0.5%,
also inferred from the mappings.

o First color. The first color in a color-space read is encoded
relative to the last letter of the linker that connects the DNA
to the slide. This will cause the first color in a read to be
different from the corresponding color in other reads, which are
encoded relative to the previous DNA letter. To address this, we
“translate through” the first color of the read, thus obtaining the
first sequenced DNA letter, and use this letter as an emission.
For example if a read began "T2312...”, it will be converted to
”C312.”. The ”C” character becomes the corresponding letter-
space emission, while the remaining colors are unaffected. This
modification allows VARID to be used with color-space data
only by providing some letter-space emissions, as well as with
letter-space and color-space reads together.

A summary of the VARID pipeline and model is given in Figure
7.

2.2.2 Post Processing The HMM that VARID utilizes is
memory-less: the information about the specific reads that generated
certain letters and colors is not maintained. This leads to the
possibility that a valid path through the state-space is not supported
by any reads. For example, Figure 6b depicts an example that may
be predicted as a heterozygous SNP: 4 counts of red and 2 counts of
blue for the first position, and 4 yellow, and 2 green for the second
are valid adjacent color changes. At the same time there are no
individual reads that support the blue:green combination, indicating
that this combination is actually unlikely to appear in the genome,
and hence is unlikely to be a heterozygous position. While such
cases are rare, we supplement the probabilistic model with a post-
processing step where we verify that a statistically likely fraction of
the reads directly support each heterozygous SNP call.
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2.2.3 Running Time The running time of the typical Forward
Backward algorithm is O(nt), where n is the length of the sequence
and ¢ is the number of permitted transitions. While ¢t < k2, where
k is the number of states, in the VARID HMM k = 1600 and
it is necessary to utilize sparse matrix operations to efficiently
implement the forward-backward algorithm. Overall, the running
time of VARID is linear in the length of the genome. Furthermore, it
is possible to parallelize VARiD over larger intervals by splitting the
reference into smaller segments or windows, with the requirement
that they be slightly overlapping. The overlapping regions can then
be easily reconciled. VARID required ~ 4 minutes on a single
Intel P4 Xeon 3.2GHz machine to analyze the 80kb regions that
we analyze in the next section.

3 RESULTS

To test VARID we utilized the dataset of Harismendy et al. (2009),
who sequenced several regions of the human genome, spanning
a total of 260kb, from four individuals (NA17156, NA17275,
NA17460 and NA17773), both with the ABI SOLiD platform and
the 454/Roche Pyrosequencer. We also obtained and utilized quality
values for the color-space reads. To validate the SNP calls the
authors also resequenced the same regions with Sanger sequencing.
From the original high-coverage data sets, we generated reduced-
coverage, randomly selected subsets from the individuals with
different degrees of coverage. To analyze the ABI SOLiD data we
ran the SOLiD System Analysis Pipeline Tool (Corona Lite 4.2.2
with the 35_3 schema) on the color-space data, as well as VARiID
with both the AB Pipeline mappings as well as SHRiMP (Rumble
et al. (2009)) mappings, for all of the read subsets. For the 454 data
we ran VARID and gigaBayes (Marth ef al. (1999)) on the letter-
space reads (using Mosaik and SHRiMP as the mapping tools).
Finally, we tested our prediction pipeline on various color-space and
letter-space subsets combined. We compared the variants called by
each method with the Sanger validation set to compute the following
statistics:

o Number of True Positive (TP): SNPs that the predictor detects
that are also in the validation set;

For heterozygous calls
doubled states. emit: colors

6 reads E
3

2 combinations .
|

o Number of False Positive (FP): SNPs the predictor calls variant
that are not in the validation set;

o Precision: the number of true positives as a fraction of all
predictions, 100 « TP/(TP + FP);

o the Recall: the fraction of true positives as a fraction of the
validated set, 100 « T'P/V alidatedSN Ps.

The results of our analysis are illustrated in Tables 1-3, where we
present color-space only results, letter-space only results, and results
for combinations of the two sequence types.

In Table 1 we present results from variation identification with
VARID and the Corona Lite SNP caller
(http://www.solidsoftwaretools.com/gf/project/mapreads), using the
color-space data. We ran VARID both with the alignments produced
by the AB pipeline for the Corona caller, and with alignments
generated by SHRiMP. While the results as a whole demonstrate
the difficulty of calling variants from color-space data, even at high
coverages, a direct comparison of the two SNP calling pipelines
shows that VARID outperforms the Corona pipeline when using the
same set of mappings generated by AB’s own mapping tool. The
VARIiD + SHRiMP pipeline performs similarly to the VARiD + AB
Mapper pipeling, having a higher recall rate, but simultaneously a
lower precision.

In Table 2 we compare results of running the VARID framework
on the 454 Roche letter-space data using the Mosaik alignments
as well as using the SHRiIMP alignments, compared to gigaBayes
using Mosaik alignments. At low coverages, the gigaBayes SNP
caller produces the best results, having higher precision with
similar recall. At higher coverages, however, VARiD outperforms
gigaBayes with higher recall and higher precision.

Table 3 shows the main advantage of the VARID pipeline: its
ability to combine color-space and letter-space reads. In determining
useful combinations of the SOLiD and 454 Roche subsets for
running on the VARID framework together, we considered the cost
and accuracy of each platform. The 454 Roche contains a relatively
high indel count, but has much more accurate base calls. At the
same time, it can be estimated that the 454 platform is 10 times
more costly. Therefore, we considered combining read coverages
with 10-fold more ABI SOLIiD than 454 data. For example we may

Seems like there
is support for
E a het SNP call.

But NO actual support
for Blue-Green (second
suggested allele) exists

]

\HE

Fig. 6. Diagram showing the expansions of the model: on the left, expanding the states to allow for gaps and heterozygous calls, as well as examples of
allowed and not allowed transitions. On the right, adding a cleaning post-processing step is needed because of examples such as these: here we have 6 reads
at 2 adjacent positions: when the colors of these reads are added up, it seems like we could call a geterozygous SNP represented by the allele combinations
(red-yellow), (blue-green), although the blue-green combination is actually not present in any read.
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VARID HMM
reference —
States = diploid genotypes @
Mapping each position, including gaps
(eg SHRIMP, MAQ, ——)
Read AB. SOLID Tools) Emissions = letter/color of
eads 7~ aligned reads
(LS & CS)

Transitions = constrained,
frequency of nucleotides

Compare
diploid calls
rolzgzts_in — with reference |
P 9 for hom/het

SNP calls

Fig. 7. A summary of the steps involved in the described pipeline. The purple sections are inputs, outputs or steps performed with previous software. he blue

parts illustrate steps described in this manuscript.

combine 50x of color-space reads with 5x letter-space, giving us the
equivalent of 100x of AB SOLiD or 10x of 454 in terms of cost.
Of course the best tradeoff will vary depending on the costs of the
platforms and their respective accuracies.

In table 3 we consider the various possible coverage combinations
between the AB SOLiD data and the 454 Roche. In general, the
performance of VARID on a certain coverage of color-space data
can be greatly improved with just a small number of 454 reads. More
concretely, comparing at cost we can look at 50x coverage of color-
space with 5x coverage of 454 data: when combined, we find 84%
precision and 77% recall. Looking at the cost equivalent coverage
of 454 data - 10x - VARID gives around 7-9% lower percentage
in both precision and recall, while GigaBayes precision will be even
lower. Similarly, for the cost equivalent coverage in AB SOLiD data,
100x, VARID and Corona will again perform worse as can be seen
in the 100x row’s first entry. Combining the data, therefore, shows
significant improvement over predicting variation from letter-space
or color-space only — 50x of color-space with 5x of 454 can perform
better than 100x of color-space.

4 DISCUSSION

The various NGS technologies that have emerged in the past few
years have different data representations, advantages, biases and
features. In this work we introduced a novel probabilitic framework
for variation identification which can use both letter-space and
color-space data simultaneously. We have shown in our results
that when using only color-space data - a data type for which
very few genomic analysis tools exist - the model can perform on
par or even better than the ABI SOLiD toolkit Corona Lite, and
similarly can match or improve on gigaBayes predictions for letter-
space data. More importantly, when the color-space and letter-space
data are combined the VARID framework allows for a significant
performance increase, demonstrating that a method that can take
into consideration multiple technologies, combining their different
advantages and compensating for their different weaknesses can
achieve higher accuracy variant predictions than are possible from
any single data type.
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CS VARID - AB map VARID - SHRiMP map Corona

data Precision | Recall | TP | FP || Precision | Recall | TP | FP [| Precision | Recall | TP | FP
CS-10x 88.5 17.3 69 |9 76.7 34.7 138 | 42 || 82.3 16.3 65 14
CS-20x 85.1 31.7 126 | 22 || 74.6 51.0 203 | 69 || 79.6 33.4 133 | 34
CS-50x 81.1 47.5 189 | 44 || 80.0 67.3 268 | 67 || 80.2 57.0 227 | 56
CS-100x || 84.0 59.5 237 |1 45 || 77.9 734 292 | 83 || 81.8 69.8 278 | 62
CS-200x || 83.0 64.8 258 | 53 || 79.9 77.1 307 | 77 || 80.1 74.6 297 | 74

Table 1. Results illustrating performance of VARiD and Corona Lite on various coverage rates of color-space AB SOLiD reads. In the first of the three

sections, we run VARID on various datasets aligned via the AB aligner, in the second we run it with SHRiMP mappings, and finally in the third we run the
Corona Lite pipeline on the AB SOLiD mappings, for which it is optimized. In general the results show that variation detection is difficult even with high
coverage of color-space, and the results are hard to compare among the pipelines - for example, VARID with SHRiMP mappings tends to have lower precision,
but higher recall. These results are improved significantly when adding just a small amount of 454 coverage in the combined VARID platform, as seen in Table
3.

LS VARID - mosaik map VARID - SHRiMP map gigaBayes

data Precision | Recall | TP | FP || Precision | Recall | TP | FP || Precision | Recall | TP | FP
LS-1x 39.2 10.8 38 59 62.1 11.5 41 25 80.4 11.3 45 11

LS-2.5x || 67.4 31.5 124 | 60 73.1 31.0 122 | 45 70.2 349 139 | 59

LS-5x 63.0 50.0 199 | 117 || 74.0 49.2 196 | 69 64.0 59.8 238 | 134
LS-10x 74.5 68.3 272 | 93 76.4 67.6 269 | 83 59.2 68.8 274 | 189
LS-20x 67.7 82.2 327 | 156 || 70.3 83.2 331 | 140 || 55.8 64.3 256 | 203

Table 2. Results of running VARID (Mosaik Alignments), VARID (SHRiMP Alignments) and gigaBayes (Mosaik Alignments) on all individuals of our

datasets, using the 454 Roche data at various coverages. VARID with SHRiMP mappings and gigaBayes can be argued to perform similarly at the lower
(under 10x) coverage, while VARiID with Mosaik alignments runs slightly worse. However, in the higher coverages, VARID performs better, with both higher
precision as well as equal or better recall. For example, at 20x, VARiD with SHRiMP mappings has 70% precision to gigaBayes’ 56%, and has 83% recall to
gigaBayes’ 64%.

Rumble, S. M., Lacroute, P., Dalca, A. V., Fiume, M., Sidow, A., and Brudno, M. 5(5), e1000386+.
(2009). Shrimp: Accurate mapping of short color-space reads. PLoS Comput Biol,

Letter-space Coverage
| || 0x|1x|2.5x|5x|10x|

0x 62.1 | 73.1 | 74.0 | 76.4
11.5 ] 31.0 | 49.2 | 67.6
10x 76.7 | 78.2 | 78.8 | 80.5 | 80.2
Colour-space 34.7 | 38.7 | 47.7 | 61.1 | 73.1

Coverage 20x 746 1769 | 81.8 | 824 | 81.2
51.0 | 47.7 | 54.3 | 66.1 | 79.4
50x 80.0 | 81.1 | 82.8 | 83.8 | 83.8
673|613 | 663 | 76.6 | 83.2
100x || 77.9 | 80.1 | 82.8 | 84.7 | 84.0
73.4 | 709 | 73.6 | 80.7 | 88.2
Table 3. These numbers show the improvements we can obtain when combining reads from various platforms. Comparing at cost, for example, we can look
at combining 50x of color-space data with 5x of 454 Roche data. Comparing to the equivalent cost of 454 Roche data at 10x in Table 2, We find that we are
around 7% more precise and have 9% better recall rate in the combined run. Comparing to the cost equivalent of AB SOLiD Color-space at 100x, we obtain

around a 6% better precision and 3% better recall. Another example can be found by looking at the CS-100x and LS-10x combination, and comparing with
200x of CS or 20x of LS in the previous Tables.




